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ABSTRACT

Pressure, .volume, and energy equation of state data obtained using
shock wave techniques are presented for aluminum and Teflon. Solid
aluminum samples initially at room temperature or preheated to near
melting, and porous aluminum samples at room temperature, were studied
over a pressure raage of 200 to 1200 kbar. It was found that che
larzest variations of volume and energy could be achieved using porous
samples. Values of Griineisen’s ratio estimated from values of the
thermal pressure and thermal energy range from 2.1 to 1.37. Due to
the sensitivity of Griineisen’s ratio to the Hugoniot data, it is not
possible to formuiate its energy or volume dependence conclusively at
the present time. Of greatest significance is the fact that it does

not vary widely.

Solid and porous Teflon samples were studied over a pressure
range of 100 to 500 kbar. Hugoniot curves drawn on the basis of the
ten data points obtained indicate a variation of Griineisen’s ratio from
about 0.7 to 2.0.
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SECTION 1

INTRODUCTION

Caiculations describing wave propagation in a continuous medium re-
quire the knowledge of a constitutive relatior or esquation of state
characterizing the material properties of the medium. In solids at
pressures greatly in excess of the shear vield stress, an equation of
state relating pressure, velume, and internal energy sufficiently de-
scribes the medium. The work reported here was undertaken to study the
equation of state of aluminum and Teflon using shock-wave techniques.

The largest portion of the effort was spent investigating aluminum.

In order to reach thermodynamic states lying in a région of the pressure-
volume plare rather than along a single Hugoniot curve, the initial state
of the material must be varied. This variation was achieved by using
soiid and porous aluminum at room temperature and by preheating solid
aluminum to several hundred degrees prior to shocking. It was found

that the largest changes in the final shkock state could be produced

using porous samples.

The following sections include a general discussion of equations
of state of simple systems and how they may be studied by shock waves,
a description of the experimental techniques used and the performance
of the experiments, and an analysis of the data and comparison with

other data and equations of state.




SECTION 11

BASIC THERMODYNAMICS OF SHOCK WAVES

1. EQUATIONS OF STATE

The term “equations c¢f state” has unfortunateiy been used in shock
wave literature to denote a variety of relationships which ccnvey dif-
ferent amounts of thermodvramic information about the system under con-
sideration. Quite frequently curves such as isentropes, adizbats, or
Hugoniots are referred to as equations of state. The specification of
one of these curves is not a specification of the equation of state of
the svstem because an equation of state is a function of at least two
independent variables. The purpose of this section is to summarize the
basic thermodvnamics of equations of state of simple, nonreacting, single

phase systems.

In 2 simple svstemn the two independent variables are generally taken
to be any two of the four variables volume, pressure, temperature, and
entropy, denoted bv ¥, P, T, and S, respectively. Expressions for the
remaining txo as functions of the txo so chosen constitute a complete
equation of state, since they vield a complete thermodynamic description
of the svstem. Each of the relationships independently is called an
incomplete equation of state, or simply equation of state. Given the
two relationships, 7 = T(S,¥), P = P(S,V), which can in principle be
inverted so that any pair of variables is independcnt, the internal energy

1s given by

df = TdS - PdV (1)

Knowledge of the internal energy E(S,V) is then equivalent to the twu

equations of state T(S,V) and P(S,V) since

-
)

3E 3E
—1], P(S,V) = -|— (2)
S/

2t

1

T(S.V)

The function E(S,V) is fregueatly called a2 fundamental equation or zonplete

equation of state because it also contains a complete thermodynaaic
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If ¥V and T are chosen as independent variables,

system.
then S(V,T) and P(V,T) form a complete equation of state. Analogous to
Eq. (1), the Helmholtz free energy is given by

dF = =8dT - PdV (3)

and F(V,T) is the fundamental equation equivalent to the two equations
of state S(V,T) and P(V,T) since

oF oF
{—3) p = =l
(3T)v' v,7) (BV)T (4)

Similarly the enthalpy function H(S,P) and the Gibbs free energy G(P,T)

S(V,T)

serve as fundamental equations when the independent variables are the
pairs (S,P) and (P,T) respectively. Ccuplete equations of state may be
formulated in other ways; all formulations of a complete equation of
state are equivalent and can be deduced one from another through general

thermodynamic relationships.

Quite frequently one of the incomplete equations of state is the
internal energy E(V,T) or E(P,V). Recall that the internal energy is a
complete equation of state or fundamental equation only when it is ex-
pressed as a function of S and V. If E(V,T) is known, supplementing it
with either P(V,T) or S(V,T) constitutes a complete equation of statel,
Similarly supplementing E(P,V) with either T(P,V) or S(P,V) constitutes

a complete equation of state!l.

In shock wave research the incomplete equation of state E(P,V) is
of particular interest. This equation of state involves only the mechani-
cal thermodynamic variables P, V, and E and does not yield values of the
thermal thermodynamic variables S and T. Shock wave measurements yield
an E(P,V) incomplete equation of state since the values of pressure,
volume, and energy are computed from the Rankine-Hugoniot jump conditions
expressing the conservation of mass, momentum, and energy, that do not

involve the entropy and temperature explicitly.

! If one is known, the other can be determined in principle from Eqo (1).
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Let us then summarize. In & simple thermodynamic system there are
two independent variables. These two are generally chosen from V, T, S,
and P. An equation expressing one of the remaining pair as functions of
the independent variables is called an incomplete equation of state.
Expression cf both remaining variables in terms of the two independent
variables is a complete equation of state, i.e., a set of relationships
from whick all other thermodynamic properties of the system can in prin-
ciple he computed. Thz internal energy may be added to the above quartet
of variables, but it is related to them through Eq. (1). An isentrope is
the intersection of the incomplete equation of state surface P = P(S,V)
with a plane S = constant. Thus, prescribing an isentrope P = P(S,,V) = f(V)
is not prescribing an equation of state. Similarly a Hugoniot curve 1s
obtained by subjecting an E(P,V) incomplete equation of state to the con-

straint

1
E(P,V) = Ey+ 5 (P + P)(Vg = V)

where Ej = E(P,V,). Specifying a Hugoniot curve is not specifying an

equation of state of the system.

2. MIE-GRUNEISEN EQUATION OF STATE

It was stated earlier that equation of state information obtained
from shock wave data leads to an incomplete equation of state of the
type E(P,V) This equation of state tells the value of the internal
energy of the system over a region of the pressure-volume plane but does
not contain the information necessary to compute the temperature or
entropy in the same region. Since temperature and entropy are thermal
thermodynamic variables, as contrasted to pressure and volume which are
mechanical thermodynamic variables, the E{P,V) equation of state might
be suitably called a mechanical equation of state. The energy, pressure,
and volume are obtained from shock data by measuring wave velocities and
applying the Rankine-Hugoniot jump conditions expressing conservation of

mass, momentum, and energy.

In problems of fiow caiculations the incomplete E(P,V) equation of
state may be sufficient since it doez permit calculaticn of the curves
of constant entropy in the pressure-volume plane. The comstant value of
the entropy associated with each isentrope is unknown, however. One

P-V-E equation of state which has been extensively used in describing

(1]
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metals is the Mie-Griineisen equation of state with the Griineisen ratio
I" assumed to be a function of volume only. In general the Grineisen
parameter, as for all thermodynamic state variables, is a function of twe

independent variables and is defined by

r ap) (3P/3T), (38/3V) .
yY = V]l— z V ——m— = )
e (35 v (3E/3T), v T(3S/3T), (5)

where X and Y represent any two of “he five variables E, P, S, V, and T
which are chosen as independent. We shall define the generalized Mie-
Gruneisen equation of state as the solution of any one of the partial
differential equations of Eq. (5) when I'(X,Y} is specified All of the
definitions of Eq. (§) are equivalent and may be derived one from another

by applying thermodynamic identities.

Using the last definition of Eq. (5),

v [3s S

Along an isentrope S(V,T) = constant and

dS = BS) dv + ) dT 0 (1)
S\, or/,
Therefore the isentrcpes in the V-T plane are given by the integrals of
oT T
-] = - ¢.D (8)
oV /o 14

The usual Mie-Griineisen equation of state as applied to solids is obtained

. - - o
by writing the pressure and internal energy each as a sum of @ K compres-

sional component and a thermal componeant:

E(V,T) = E_(V) + E,,(V,T)
P(V,T)  P_(V) + P (V,T) (9)

where P_(V) = =dE (V)/dV, the subscript ¢ refers to 0°K. and the thermal

comporents vanish for all V at T = 0. Also the Griineisen parameter [ is

&}
)
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taken to be a function of veclume alone, i.e., I” = I"'(V). 1In this case
integration of Egq. (8) yields
T = ®S8)IV) (10)
where
[T‘(V)
- d‘l
(V) = Gge’ " (11)

and ®(S) is function of the entropy and hence constant along an isentrope.

The thermodynamic definition of the temperature combined with Eq. (19)

(%)

Integration of Eq. {12) then yields

gives

T{S,V) =

®S)e(V) . (12)

E(S,V) - E.(¥) = 6(1) [ 0(5)dS

(13)

since E(Q, V) EC(V).

it expresses the internal energy E as a function of S and V.

Equation {13) is a fundamental equation since
This equa-
tion can be evaluated explicitly as a function of S and V if the functions
EC(V), &(S), and F(V) or I'(V) are known.
a function of volume only, the specification of EC(V), '(v), and ®(S) con-

Thaus, for a system in which I is

stitutes a complete eguation of state. The pressure is given by

P(S,V) k) _ED aw rd:SdS (14)
.7 = v/ dv 2V ()
/0
But ~dE_(V}/dV = P_(V) and therefore
RN GG NS
Ps,¥) = P V) +——— [ &)
<0
(v
= P_(V) ¢ (,) E(s,vy —E (")}, (15)

where Eas. (11} and {13} have been used.

(15) is the usual Mie-Griineisen

Eg.

equation of state and does not require knowledge of the entropy through ®(S).
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Equatior (15) could h..ve been obtained by direct integration of the first
form of Eq. (5).

to form a complete equation of state and how the E-P-V equation does not

However, this method shows what information is needed

depend upon entropy.

Consider now the specific heat at constant volume as a function of

T and V. 7The change in C (V,T) along an isentrope is given by

(EE!) + (22!) (QI)
oV T oT v oV s

(a_c,\

W/

2 (3s AN K
= Tl=l=) | -l==) (= , (16)
av\or/, ) \ar/;\3s/,
using C, = T(9S/3T), and (OT/V)s = —(0P/dS),. Furthermore, since
T = (9E/9S), and (OP/°T), = (3S/9V),,
( acv) K os\ | _(acv) (P/3E},
—_ = Tl—{=
A sn\ev/,| \3T/, (s/oE),
3 fop) | 30? (ap)
= ey e - T —— - . (17)
T_GT(ET) o, (aT N\9E/,
3 (9P/E), /acv) /ap) r (£ c (ap) ( 9Cy\ 1'3’_’)
Ter Grren, T "or)\ee), = "iler A%l T\,
[ C../
? (ap) ] it ar)
= TC, ==\ e (18)
vier\ae/ | w31/,

If I is a function of volume only, Eq. (18) shows that C,(V¥,T) is constant
Thus C (V,T) = C,[y(S)] is some function of the entropy

Eq. (9) implies that when I’ is a function of volume only,

9(v7)
f(-T

along an isentrope.

only.

(19)
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Thus for I' = T(V) the specific heat at constant volume is given by

g(v)

c,v,T) = g(-—F-) (20)

One special case of interest is the Debye model of a solid. A result
of this model is that the specific heat at constant volume is a function
of 8,(V)/T where 6,(V) is the Debye characteristic temperature. Identify-
ing 6,(V) from the Debye modei with &(¥) in Eq. (20) and using Eq. (10)
yields a relationship between Griineisen’s ratio (V) for a Debye solid

with the Debye temperature & (V)

d ln QD(V)

Hvy = ——— 21
dInV (2D

Slater (Ref. 1) suggested a relationship between I'(V)} and the isen-
trones of the system based on the Debye model and the assumption that in
an elastic solid the ratio of the longitudinal sound speed to the trans-
verse or shear sound speed is independent of volume. This assumption 1is
equivalent to assuming that the ratio of the isentropic bulk modulus to
the isentropic rigidity modulus is volume independent or that Poisson’s

ratic is volume independent. The Debye characteristic temperature is

given by (Ref. 1):

' 2y 1-1/3

(V) = Ajl—— —
2C} + ¢

(22)

where C, and C, are the longitudinal and transverse sound wave velocities

T
respectively and A is a constant.

1 1

In6y = Ind-—1ln2V+1InC +In (2 + C3/C}) (23)
d In 6, 1 din g
—_— = -t (24)
d lnV 3 d InV

where it has been assumed that C;/ C, is independent of volume. The
longitudinal elastic wave velocity is given by
%

4
c, = [VvK+ 3 £)) (25)
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where K is the isentropic bulk modulus and u is the rigidity modulus.

1 1 1 4
InC, = —InV+—1InK+— 4 -
n G, 5 n 9 n 5 ln (1 3K) (26)

Since the assumption C;/C, is independent of volume implies pu/K is inde-

pendent of voliume,

dlnG 1.1 dink (27)
dinV 2 2 dlinV
Now
P
K = v (- :—\ (28)
L ov/
2 2
d ln C, o (3%P/3V?)
r—————— = } t+ — 29
dInV 2 (/) (297
Combining Egqs. (29) and (24) yields
d In 6, y QP/Vt)s 4
Ny = ~——— 2 ————— - Z (30)
dlinV 2 (P/V), 3

This is the Slater relation for Griineisen’s ratio in terms of the deriva-
tives of the isentropes. It has been derived on the basis of the Debye
model and the assumption that the ratio of the sound speeds is independent
of volume. Since I" has been assumed dependent or volume only, the ratio
of the partial derivatives on the right hand side of Eq. (30) is also
dependent on vclume only, that is, independent of entropy. Since the
relation must hold then on any isentrope at a given volume, it must hold

on the isentrope S = 0 which is also the isotherm T = 0.

Dugdale and MacDonald (Ref. 2) propose that the Slater relation be
modified to
v 2pv2/3yap? g

r = -—= -=
e 2 PV 3 (1)

10




where again P refers to the isotherm T = 0°X. The Dugdale-MacDonald
relation has been used in extensive calculations by Rice, McQueen, and
Walsh (Ref. 3) based on shock data.

Irn summary, the usual form of the Mie-Griineisen equation of state
is that of Eq. (15), which is a consequence of assuming I = I'(¥). If the
Debye model of a solid is used, I"(V) and the Debye characteristic tempera-
tere are related by Eq. (21). Substitution of the expression for the
Debye temperature, Eq. (22), into Eq. (21) plus the assumption of constant
Poisson’s ratio, yields the Slater relation between ['(V). and the 0°K

isotherm.
Equation (15) may be written

T
P-P (V) = — (E - EC(V)] {15)

The point P, V, E refers to any arbitrary equilibrium state in the
region of the pressure-volume plane for which Eq. (15) is valid. P_(V)
and EC(V) are the compressional pressure and energy at that same volume.
Equation (15) says, then, that the thermal component of the pressure at
volume ¥ is equal to I'(V)/V, a function of volume, times the thermal com-
ponent of the energy at the same volume. In particular, if the pressure-
volume, energy state under consideration lies on a Hugoniot curve centered

oR state Po’ ¥ Eo‘ Eq. (15) becomes

i
0’

N
P, - P (V) = —(‘—) [E, - E_()] (32)

Subtraction of Eq. (32) from Eq. (135) yields

() .
P-P, = —— [E-E] (33)

Equation (33) now says that at volume i the difference in thermal pressure

between the state P, V. E and the Hugoniot centered at P, Voo Ey is equal

o
to [(V)/V times the difference in thermal energy between state P, ¥V, E and
the Hugoniot. Since 0°K isotherms are nct directly measurable as are
Hugoniot curves, i1t is cenvenient te use the equation of state in the form
of Eq. (23) with the Hugomiot as a reference. If I'(V) is assumed to have

a constant value G and the experimental Hugoniot is expressed as a fuaction

of o = (p{po)- 1, £q. (33) can be writtea

11
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P = Py{u) + GpE’ (34)

where p = 1/V and E' = E - £,, the thermal energy offset from the Hugcniot.

The Hugoniot internal energy and pressure are related through

?

By = Eqg 45 Py(¥y = V)
rP, i
= E, +-; (35)

Substitution of Eq. (35) into (34) yields

r G
Po= Pyl -—éi] + Gp(E ~ E,) (36)

where £ is the total internal energy and E; is the internal energy at the
foot of the Hugoniot P {u). Equation (36) is valid for G(g) as well as
G constant. However, if G or ." were to have an energy or temperature
dependence, the P-V-E equation of state would not have had the form of
Eq. (15) which led to Eq. (36). If " is a function of the energy as well
as volume, the generalized Mie-Grineisen equation of state is given by
integration of the differential equation (5) defining I'(E,V). Taking

E and V as independent variables

I, v) L. BP) (3)
L, = -— 3
3%/,
Integrating at censtant F
| P ; —
P-P (V) = _,.j T(E,V),dE (37)
r Vg _v¥)

where E_(V) and P_ (V) are the energy and pressure al some refereace point

at the volume V.

3. SHOCK WAVE MEASUREMENTS OF EQUATION OF STATE

A series of experiments, in which shock waves of varying intensity
are produced in a material and measuremzents of the resulting shock and
particle velocities are made, yields a _ingle Hegoniot curve uniquely

specified by the initial state. The specific volume ¥ and pressure P

12
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are related to the shock and particle velocities through the equations

. (38)
Ve )
and
P = p lu

wvhich express the conservation of mass and momentum, respectively. The

energy along the Hugoniot curve is given by

E=Eo+

M|»—-

PV, - V) (40;

where E; is the energy at P = 0, V = V. As stated earlier, a single
Hugoniot curve is not an equation of state: it is only a particular pressure-
volume curve along which the energy can bke computed from Eq. (40). A

P-V-E equation of state consists of knowing the energy over a region of

the P-V plane. For each initial state there exists a different Hugoniot
curve. Therefore, by varving the initial state of a system, shock-wave
experiments can be used to generate many Hugoniot curves in the P-¥ pilane
which then may be used to infer the depeadence of the internal energy on

voluxze and pressure.

In the work to be described, preheated material, porous material, =nd
maltiple shocks have been used to vary the initial state. The preheating
technique consists of initially heating the material, aluminua in this
casc, at zero pressure to near its =elting point. The initial voluze
increases cdue to thermal expansion and the initial energy increases by
an amouat AE = [CpdT. The double shocking technique consists of reflecting
the initial sheck induced in the material froz 2 materizl of high shock
izpedance, tungsten for exazmple. The state behind the first shock then
serves as an initial state for the reflected second shock. The use of
porous materials, described first in the open literature by the Russians
(Ref. 4), produces @ large increase of thermal internal exergy in the
szmple during shock compression due to the irreversible collapse of the
porous structure. Due to the large thermal energies, Hugoniot curves of
both positive and negative slopes are observed. {Refs. 5, 6, 7) Such
behavior of the Hugoniot curves of metals can be explained by using the
ordinary Wie-Girineisen equation of state with i = I'(V) or a more elaborate
equation f state taking account of the ther=al coatribution of the conduction

electrons.
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SECTION 111

EXPERIMENTAL TECHNIQUE

To obtain Hugoniot points for aluminum which do not all lie on a
single curve the three approachkes described in Section Il of this report
have been attempted. These are single shocking porous material, double
shecking porous material, and preheating the material; only the first
nethod was used extensively. In studying Tefion, the first method was
used exclusively. In this portiona of the report are described sanmple

preparation and experimental techrique.

i. 3METHOD OF OBTAINING HUGONIOT DATA

Hugoniot points were determined by the impedance match nethod
(Ref. 3), using 2024 aluminum as a standard, as illustrated below for a
pcerous aluminunm specimer. At the driver-porous aluminua interface a shock
is transmitted into the porcus aluminum and a rurefactiun is reflectead
back into the 2024 driver. Since
the Hugoniot and relief isentrope A a
cross curves in the pressure (P)-
particle velocity (u) plane for
2024 aluminum are known,

(Refs. 3,8) a measurement of the
free-surface velocity of the
2024 driver and the shock veloc-
ity through the sample suffice to
fix a poirt on the Hugoniot of
the saczple. The measureament of
the driver free-surface velocitv

gives the point C on the P-u dia-

gran of figure 1, indicating that

the initial! shock state in the >
driver is state B. All of the
states which the 2024 can reach FiG.1 IMPEDANCE MATCH METHOD OF

from state B through a reflected DETERMINING A HUGONIOT




isentropic rarefaction lie on the cross surve CDB. Since there must be
continuity of pressure and particle velocity at the 2024-porous aluminum
interface, the shocked state in the porous aluminum must also lie on this
cross curve. FEquation (39) requires that the Hugoniot point of the porous
material lies ona ray through the origin of slope p,U/m, where m is the
porosity, p, is the crystal density of aluminum, and U is the shock veloc-
ity through the sample. Hence the intersection of this ray, OD, with the

cross curve, CDB, yields a point on the Hugoniot of porous aluminum.

2. DESCRIPTION OF EXPERIMENTS
a. Rcon TEMPERATURE SHOTS

Shocks were induced into 2024 aiuminum drivers, upon which the samples
were mounted, by high explosive in direct contact or by the impact of an ex-
plosively accelerated flying plate. The direct contact driver system con-
2 initiating a pad of 9404 HE,

4 inches long and 8 inches in diameter, in contact with a 3/8- or 1/2-inch-

sisted of an 8-inch-diameter plane wave lens

thick 2024 aluminum driver plate.

Most of the experiments required flying-plate systems because of the high
pressures desired. The samples were mounted cna 3/8- or 1/4-inch-thick 2024
aluminum driver plate. A streng shock wave was produced in the driver by
impact of a 1/8- or 3/16-inch-thick stainless steel or brass flyer plate
(see figure 2). 1In all cases an 8-to-9-inch-diameier explosive pad, ini-
tiated by a plane wave lens, wasused to accelerate the flyer plate across a
3/4-inch or l-inch air gap. To prevent spalling and breakup of the flyer,
it was separated from the explosive pad by a 1/16-inch Plexiglas buffer.

All velocities were determined by optical techniques with a rotating
mirror streak camera at a writing speed of 3.73 mm/usec. Multiple slits
were used and illumiusation was by an explesive argon light source. Mea-
surement of shock velocity through the samples was made by small glass
mirrors tonded to the driver free surface 2nd aluminized Mylar bonded to
the steel rings in which the porous samples were pressed. Destruction of
the mirrors on the driver surface gave the arrizal time of the shock at
the driver-sample interfec2 and the destruction of the Mylar gave the

arrival time of the shock at the sample free surface.

Mecasurement of the free-surface velocity of the 2024 aluminum driver

plate is made by mounting a mirror inclined at a small angle on the driver

2 P-80, Pantex.
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the inclined mirror continvously over a small time
angular cutoff of reflected light intensity on the
The mirror angle is chosen so that the velocity of
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microjetting or by a shock in the ambient gas. The mirrors mounted on the
surface on either side of the inclined mirror indicate shock arrival at
the free surface and any tilt the shock front may have. Knowledge of the
initial angle at which the inclined mirror is mounted, the writing speed
of the camera, the magniiication of the camera permit calculation of the

free-surface velocity from the angle of light cutoff on the film.

Since the plane arca on the driver haviag uniform pressure and simul-
taneous breakout time was less than 4 inches in diameter, nuch care was
used in layout of samples and free-surface mirrors. Samples were mounted
at the same distance from shot center as the driver-state inclined mirrers
in order to minimize the effect of radial pressure variation. A typical
streak camera record 1s shown in figure 4. Figure 42 i1s a stil}l picture
of the shot face showing the mirrors with an image of the three streak
camera slits exposed over them. Slits ]| and 3 record data from the two
samples being studied. On slit 1 (slit 3 1is identical), mirrors 1 and 2
are on the driver and record the arrival time of the incident shock at the
driver-sample interface. The aluminized Mylar on the circular sample re-
corde the arrival of the shock at the sample fres surface. Mirror 6 isan
inclined mirror mounted to measure the sample free-surface velocity in the
manner just described. The frec-surface velocity of the aluminum driver
is measured on slit 2 by inclined mirrors 7 and 8 while mirrors 3, 4, ard

5 are on the driver surface to detect shock arrival and tilt.

The streak camera record from this shot is shown in figure 4b. From
siit 1 (and similarly for slit 3) the transit time At of the shock through
the sample and the inclined mirror cutoff yielding sample free-surface
velocity are obtained. From slit 2 the inclined mirror cutoffs yielding

driver free-surface velocity are determinec.

To reduce extraneous shock light a methane atmosphere surrounded the

samples. This proved particularly effective on multiple siit shots.

Similar techniques were used in obtaining high pressure data by double
shocking of initialiy porous aluminum. A small tungsten block was placed
over half of the sample and tvo slits observed the sample. One of :ihe
siits recorded the shock velocity through the sample in the manner just
described while the other slit, observing the haif of the sample covered
by tungsten, recorded the free-surface velocity of the tungsten. A third
slit recorded the 2024 aluminum driver free-surface velocity just as did

slit 2 in figure 4. The free-surface velocity of the driver und the shock

19
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tlirough the sampie yieid the state behind the initial shock in

velociiy

the sample just as before. Upon reaching the sample-tungsten interface,
the initial shock is transmitted as a shocx into the tungsten and re-
flected as a second shock back into the sample. A measurement of the
free-surface velocity of the tungsten together with the Hugoniot of tung-
sten as determined by McQueen and Marsh (Ref. 10) yield the state behind
the transmitted shock in the tuagsten. Because of continuity of pressure
and particle velocity across an interface, the same pressure-particle
velocity state exists behind the reflected wave in the sample. The final
specific volume and energy behind the reflected wave may then be calculated

by approgpriately applying the jump conditions across the reflected shock.

b. EXPERIMENTS USInG PREHEATED 1060 Arumisus

Solid 1060 aluminum samples were heated to temperature in excess of
500°C and then impacted by an explosively accelerated brass piate. HMea-
surements of shock velocity through the sample and of the impact velocity
suffice to determine a Hugoniot point for the sample if the Hugoniot of
the flyer plate is known. The experimental arrangement for studying
heated samples is shown in figure 5. Two samples of 1060 aluminum, one
to be heated and the other 1s a cold control sample, are mounted in an
aluminum base plate such that the flyer plate strikes the samples directly.
The sampie tec be heated (on the left in figure 5) is supported in a guartz
erclosure to insuiate it thermally from the base plate. It is heated by
a resistance-wire heating elcment and the temperaturcs of both the hot and
cold samples are menitored by thermocouples as shown. The face of the shot
is viewed through the slits of the streak camera. Using the polished
surfaces of the samples to refiect light from an azgor light source, the
shock velocity 15 determined by recording the time of arrival of the shock
at twc thicknesses or the sample in much the same manner as with the porous
samples. The free-surface velccity is determined by measuring its time of

fiight across the central gap to a quartz mirror.

Independent measurements of the flyer plate velocity are made by two
sets of mirrors mounted in the flight space on the same radius as the
samples. The successive destruction of the reflectivity of the central
mirror and then the two outer mirrers of each sat gives the time of flight

over a 5/32-inch gap just prior to flyer-sample impact.
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QUARTZ INSULATOR STAINLESS STEEL RADIATION SHIELD (0.001" THICK)

PLEXIGLAS BUFFER BRASS FLYER PLATE (I/68" THICK

B HIGH EXPLOSIVE PAD

SECTION A-A

FiG. 5 EXPERIMENTAL ASSEMBLY FOR FIRING PREHEATED SAMPLE

Directly behind the base plate is a 9.001-inch-thick brass or stain-
less steel radiation shield. It was found desirabie in two of the shots :o
include this heat shield to prevent excessive heating of the flyer plate
and the explosive pad. The flyer plate of 1/8-inch brass was accelerated
over a l-inch free run. Brass was used in these experiments since exten-
sive Hugoniot data or brass are available from thz work of McQueen and
Marsh (Ref. 10). Prior to firing, the entire assembly was pumped down to

pressures below 5 plig.
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3. SAMPLE PREPARA: N

To prepare the samples, aluminum powder of high purity was pressed
in steel rings to the desired density. The values of porosi'v m, defined
by = = py/p, where p, is crystal density and p_ is the apparent density,
were set at 1.4, 1,7, and 2.0.

The commercial aluminum powder (Reynolds § 40 Atomized Powder) had
an average particle size of 30 * 5 microns but the rather large rangs of
particle sizes made sieving necessary. The samples of porosity = = 1.4
and & = 1.7 were made from powder which was passed through a # 65 mesh
sieve (208-micron openings;. In order to press samples of porosity
r = 2.0 that were st-ong enough to be handled, it was necessary to use a
larger particle size. These samples were made from powder whichk passed
through a # 5C mesh sieve (300-micron operings) bui rot through a # 65

mesh sieve. None of the samples required sintering.

No experiments have been performed oa this project to evaluate the
effect of particle size on shock wave propagation in porous aluminum.
Russian werkers (Ref. 6) made such studies on porous copper and lead and
concluded that, in the 100-300 kbar range, changing the particle size
from 0.5 i to 100 x did not affect the shock velocity.3 It would seem
that particle size would be a significant variable in the low pressure
region where compaction of the porous structure is incomplete. However,
no experiments have been performed to evaluate the effect of particle
size on wave shape or on the approach to equilibrium in the pressure
range of interest here. Both theoretical and experimental studies of
this problem are needed to establish the validity of using porous materials

to attain high temperature-low compression states by shock wave techniques.

To make a sample, a weighed-portion of powder was carefully leveled
in a massive steel piston cylinder arrangement which held the steel support
ring. After pressing several times to a thickness stop, the sample was re-
moved in its ring and weighed and measured for density and thickness. The
uncerzainty in the average density of a typical sample was ~0.15 percent.
Ontical records of shock transit times through the specimens indicated
that they were of uniform density. A thickness-to-dizmeter ratio for the

samples was chosen to provide a central region of uniaxial strain (free

3 However, for the large particles, the shock rise time =ay be =0 longer negligable, and thus the guestioa
=aY arise as to what portion of the profile is being detected as “shock zrrivel.”




C
from edge effects) sufficientiy large Table 1

to perform precise measurements. A TEFLON SAVPLE MTASUREMENTS

typical sample was 3/16-inch thick and

1-1/2 inches in diameter, surrounded by sanpLEs® IF.]CKNESS INITIAL DERSITY
inches) (g/ca3)
i /8- cail thick }
a stcel ring (1/8-inch wail thickness}) o 0.1870 | 2.1639 = 0 0035
and covered on on¢ side with 0.907-inch- B 0.1859 | 2.1697 = 0.0035
b
f ol L 6 0.14919 1.432
thick aluminized Mylar. 10 0 1083 | 1389
10-3 0.1874 | 10525
Solid aluminum samples were simply ]g'B ,\,839??5 %g{?
. : . 9 ~0 3926 |1.187
machined and lapped from 1060 aluminunm. = -
1-a | 2885 [0.783
The solid and porous Teflon samples 1-B 5.1742 6.778

w : frns . Cor 3 . o
ere obtained from Avco orporation a. Slices of as-receiveéd sz=ples indicated

(for description of preparation, see by letzes oa saaple nuzher

. . . . L. Mamensiors of each as-receives sasgle
Ref. 11; ., 1N the form of disks nonminal 1y ceried by several mils. Average
values are given.

9 3 g - N -1 g A
2 inches i1n diameter and 1/2-inch thick. c. A value of gy = 2.1568 gfea® was msnd

ia calculaticg the porosity a.

They were sawed, ground, and dry lapped
to size (nominally 3/16-inch thick) and
their porosity was determined by direct measurement of dimensicens and

weights. Teflon sample densities are shown in Table .
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SECTION 1V

EXPERIMENTAL RESULTS

i. ALUMINUM DATA

The measured free-surface velociizies oif the 2024 aluminum driver plates

and the measured shock 2nd free-surface velocities of the solid and porous

aluminum saoples are presented in Table II.

Table 11

SOLID AND POROUS ALLMINIM SHCOCK DATA

-
2024 DRIVER SPECIMEN
SHOT NO. ra€§122§;;c5 Inizial Skock Free-Seriace
(an/ ) Density Veiocity Velocity
w/Esec {gfc23) {xa/zsec) {enfi:sec)
==1.0
11,470 2.89 2.70 7.31 2.97
ﬁ.STg 3.:(’:;(32 %.7 7.15 --
.36 5. .50 8.77 -
11,460 5.33 2.70 9.06 5.42
11,362 5.61 2.70 9.13 -
2=1.4
11,477 2.29 1.9 5.93 3.23°
10,591 3.07¢ 1.92 7.13 5.43
16,592 3.86 1.52 .79 53.93
== 1.7
11,155 3.5 1,39 5.3 3.o5t
11,286 3.%5 1.59 3.82 $.1¢%
109581 6 i3 &% 33
,S76- .67 .3% 3 3.2
10,876-2= $.67 1.39 6.30 3.25
10,925 $.37 1.33 6.83 3.33
10351 30 13 %31 235
.3 3.0%¢ -3 . 3.25¢
16.85% 5.43 1.39 7.2 3.65
11,305 3.72 i.32 1.4 -
10,392 5.8% 1.3¢ 3.33 5.24
== 2.0
11,155 3.5 1.35 5.02 $.51%
11,285 3.95 1.33 3.57 £.15%
11,082 £.02 1.33 5.53 3.11
1330 i i3 g i
al, = N - -4 .
10,864 5.43 1.35 .16 5.835
11,379 3.8% 1.35 7.29 -
11,395 3.72 1.35 7.32 -

€ A1l specimezs were romizslly 3/26-ipch thick, except for the 376-iach

szecines of Shet Ne. 131G 5762,
Alczizee shim cx {ree ssrisce.

€ Adjusted value (see teaz).
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states in the samples xere obtained through an impedance match solution
using the 2024 aluminum as a standard, as described in Section IlIl. The
2024 aluminum Hugoniot and release cross curves were obtained from

Or. R. G. MMcQueen of the Los Alamcs Scientific Lzboratory. The processing
of the porous aluminum dats consisted of first plotting the specimen shock
velocity against the driver plate pressure that was inferred from the mea-
sured free-surface velocity (using the LASL cross curves). This plot of
primary data (net included in this report) served as an initial check on
the scatter in the data. The data fer each of the porosities 1.7 and 2.0
defined a smooth curve. Tha data fer porosity 1.4 were not as abundant as
fer the other porosities. In one shot {No. 10,591), the rzacord yielding
the free-surface velocity of the driver plate was ambiguous. Therefore,
the point for the sample of porosity 1.7 was made to lie on the shock
velocity-driver pressure curve which was well defined by the other data
points. In so doing, the point for the 1.4 porosity sample was brought

into a2 position comsistent with a smooth curve through the remaining points.

The pressures, particle velocities, volumes. and energies computed from
the primary data by use of the impedance =a:ich technigue and the Rankine-
flugoriot jump conditions are presented in Tabie III. Some of the data
reported in Tables II and IIl differ slightly from those reported earlier
in the progress reports. The data have been rechecked for errers in calcu-
lations, znd questionable shot records have been reanalyzed. The present

results reflect the changes arising in the reexa=ination.

The porous aluminun data are plotted on a shock velocitv-particle
velocity diagram in figure 6. Plotted on the sace figure are some porous
alu=inus data obtained by Avco (Ref. 11). Straight lines represent all the
data quite =zell for = = 2.0 and 2 = 1.7 over the rang: investigated. The
three points for = = 1.4 lie on a straight iine. The three highest pressure
Avco points for = = 1.5 lie betwseen the lines for x = 1.7 and & = 1.4 but
indicate a different slope. The txo lower Avco =2 = 1.5 points appear ques-
tionable (indicated by parentheses} as they i=ply pressure-voluame states

which are guite scattered from the remainder of the data.

Representazion of shock data for porous material by a linear shock
velocity-particle velocity relationship is invalid fer the purpose of ex-

trapolation t¢ lower pressures. The relationship

U = C+ Su (41)
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Table 11}
SOLID AND PORUUS ALUMINGM HUGONIOT DATA

. . INTERNAL
swot xo. | voLuwe | verocity | vErociry | PRESSURE | vy | CONPRESSION® | ENERGY
(cn3/g) | (=n/usec) | (xn/usec) {cad/g) | # = P12 (105 ergs/e}

11,477 0.370 7.31 1.45 286 9.297 0.250 10.65
11,370 G.37v 7.75 1.30 377 0.284 0.202 16.21
11,562 0.370 8.377 2.46 583 .266 0.391 30.31
11,460 0.370 9.06 2.58 633 6.265 G.396 33.23
11,562 0.370 9.13 2.7} 667 0.260 0.423 36.56
11,477 0.519 5.08 1.88 184 0.328 0.128 17.57
19,591 0.520 7.13 3.03 413 $.299 6.237

10,392 0.521 7.37% 3.42 511 0.293 0.262 58.25
11,155 0.629 5.43 2.43 216 0.347 0.066 29.€1
11,286 0.631 5.82 2.67 2156 0.341 0.985 35.67
11,032 0.62% 5.93 2.69 253 0.344 0.075 35.19
10,876-1] 0.630 6.38 3.65 319 0.338 0.929¢ 16.57
10,876-2 § 0.629 6.50 3.9 316 0.333 0.111 45.76
10,925 0.631 6.83 3.29 347 0.335 0.1c4 51.33
11,330 0.631 6.96 3.25 355 0.334 0.107 52.72
10,591 0.633 6.91 3.26 356 0.334 8.107 53.22
10,894 0.630 7.25 3.4 297 0.333 0.111 58.95
11,305 0.¢€31 7-49 3.58 426 0.330 ¢.121 64.11
10,592 €.635 i.35 3.566 436 0.327 0.131 7.14
11,155 0.741 5.09 2.58 177 0.365 0.0136 33.19
11,286 0.741 5.57 2.82 212 0.364 0.0164 33.85
11,062 0.741 5.5¢ 2.83 218 0.367 0.6G81 40.76
10,926 0.741 6.72 3.37 3035 0.365 0.0027 56.73
11,3306 .74 6.79 3.31 313 0.369 0.0027 38.06
10,894 0.741 7.16 3.60 3¢8 0.362 0.9034% 64.90
11,379 e .29 3.85 77 9.351 0.0541 74.08
11,305 0.741 7.32 3.78 73 0.350 0.0277 71.05

€ Valces of u based on crystal density 9y = 2.70 g/cna.

t
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where C and S are constants, implies a pressure-volume Hugoniot given by

Py

— C*1-V/nv, ]

m

P - (42)
[1 - S(1 - V/nVy)]?

where ¥V, and P, are the initial specific volume and density, respectively,
of the solid material. The pressure vanishes at mV; in Eq. (42), rather
than at ¥V, as it must in a model that assumes zero crushing strength of a
porous solid. Although the crushing strength is not actually zero, the
low pressure extrapolation of Eq. (39) indicates a much higher pressure
and greater curvature of the Hugoniot than is consistent with very low

pressure experiments carried out in this laboratory on another project

(Ref., 12).

The data have been plctted in the pressure-volume plane in figure 7.
Shown also on the figure are the Hugoniot of solid aluminum from Al’tshuler
and the 0°K isotherm from the McCloskev program (Ref. 13). Measurements of
the density of the solid 1460 aluminum yielded a value of 2.70 g/cm®. The

Russians quote a value of 2.71 g/cm?

for the density of aluminum used in
their experiments. To make their Hugoniot comparable to the data reported
here each of their volumes at a given pressure was changed by a factor
2.71/2.70. This maintains the shape of the curve but translat-»s it slightly
toward the right, i.e., larger volumes. During the course of studying
aluminum, it was also found that the Los Alamos Hugoniot curve for

2024 aluminum could be made to agree quite closely with the Soviet Hugoniot
for pure aluminum by translating the 2024 curve to the right by a factor of
2.78/2.71, the ratio of the initial densities. Smooth curves have been
drawn through the porous aluminum data. These curves do not represent ana-
lytical fits tn the data nor are they obtained from the straight lines of
figure 6. They have been extrapolated to zero pressure and crystal volume
(dashed portion), so as to be consistent with a negligible crushing strength.
In the absence of data at very low pressure, there appears to be no a priort

justification to make any other type of extrapolation.

The two highest pressure points on the Hugoniot for porosity m = 2 have
not been weighted in drawing the curve through those data. The evidence
suggests that the abrupt change in slope indicated by those points is not a

real property of the aluminum but rather an effect of shock attenuation.
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The attenuation is due to the overtaking of the shock by the rarefaction
from the back svrface of the flyer plate. There is no conclusive proof
that this is the case, but calculatinns based on sound speeds in solid
aluminum indicate that, in the high-pressure porous aluminum experiments,
the margin of safety for obtaining data free from attenuation effects is
quite small. In figure 7 two points on the Hugoniot of perosity m = 1.7
are labeled t = 3/16 inches and t = 3/8 inches, where the t refers to the
sample thickness. Both samples were mounted on the same type of driver
plate. The driver under the 3/8-inch sample was struck by a 3/1l6-inch
flyer plate while that of the 3/16 sample was struck by a 1/8-inch flyer.
Attenuation wiil be most likely for the smallest ratio of specimen thick-
ness to flyer thickness, i.e., for the thickness sample in the present
case. Indeed, it appears that attenuation did affect the thicker sample.
The few experiments performed on this project tc attempt to evaluate shock
attenuation effects indicate a need for more studies in shock wave propa-

gation 1n porous materials.

The uncertainties in each of the points in figure 7 were calculated
by a computer program which takes into account uncertainties in measured

wave and free-surface velocities and in the initial density of the sample.

According te Eq. (15), if the Griineisen ratio is dependent sonly upon
volume, it represernts the ratio of the thermal pressure to the thermal

energy density

P~ P_(V) P,
vy = v = Y o—
E-E_(V) E,,

where the subscript “th’” means thermal. 1In cases where Grineisen’s ratio
is a function of volume plus anothker independent variable, Eq. (15} is not
the Mie-Grineisen equation of state. However, a parameter A analogous to

the Grineisen ratic mav be defined by

P-P (V)

ME, V)Y = V—mrer—— 43
(E, V) AT (43)

where P_(V) is some reference curve in the P — V plane and E (V) is the

energy along that curve. If P_(¥) and E_(V) are the 0°K pressure and

energy, then A is the ratio of the thermal pressure to thermal energy
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density. In the limit as the curve Pr(V) is approached at consta

A(E,V) approaches I'{E,¥). since Eq. (41) approaches the partial derivative
wvhich defines ['(E,V}.

¥ voaiume

In earlier quarterly reports (Ref. 14) some values of A were computed
from the experimental date using the Soviet Hugoniot (Ref. 6) for solid
alutinum as a reference. Plots of the resulting values against volume
indicated a decrease of A with decreasing volume and increasing energy.

It was pointed out that the uncertainties in A could be as large as 20 per-

cent. It now appears that this estimate of the uncertainty in A was quite

opiimistic.

As mentioned earlier, the dsta have recently been reanalyzed. The
positions of the aluminum Hugoniots for porosities m = 1.7 and = = 2.0
have not been significantiy altered. However, the Hugoniot for m = 1.4
has been shifted toward the solid Hugoniot, particulariy in the low pres-
sure region, due to the addition of a new point {Shot 11,477) and the
rejection of Shot 10,590 (because oi the poor quality of the film record).
The resulting curves are those of figure 7. The values of A at a given
volume were substantially reduced. Since individual points are subject to
some scatter and the resuiting values of A are so sensitive to the movement
of a Hugoniot point in the P — V plane, it appears reasonable to draw a
smooth curve through the data pcints in the P — V plane arnd then to compute
values of A from the curve rather than from individual points. It aiso
appears to give A a more unique value if the 0°K isotherm is used as a
refererce curve instead of the solid Hugoniot. In this case, A = VP ,/E ,.

The 0°K isotherm from the McCloskey program was used.

A plot of the points VP, against E , taken from the Hugoniot curves
and 0°K isotherm of figure 7 is shown in figure 8. The curve cobtained

from Hugoniot m = 2 appears to have positive curvature while the curves

"

for = = 1.0, 1.4 and 1.7 appear to have negative curvature. T1he points

for = 1 cluster near the origin as thermal pressure and energy are com-

paratively low aloag this Hugorniot.

The values of A cazlculated from each of the Hugonict curves for
mn =1.4, 1.7, and 2.0 are plotted against voiume in figure 9 and against
thermal energy in figure 9(b). The curves for the Hugoniot = = 1 are
values computed by the Russians from the 0°K isotherm, using the Slater
reiation for I'. It must be emphasized that thesz values of A are calcu-

lated from the curves drawn through the data and that the drawing of
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slighily different curves would yield quite differeat A\ values. Also, the
curves “ave been forced to pass through N = 2.1 at V=V and 7 = 6.% The
Hugoniot for = = 1.7 is the most we!l defined of the three as it 1s bhased
on mere data. The Hugoniot 2 = 1.4 is the mest questionable as it is based
upon ouly three data points. Aa analysis of the above results was made to
see if the dependeace on volume aad on thermal energy could be resoived in
a simple way. To achieve this, curves of A as a function of volume at con-
stant thermal energy and as a function of thermal esergy at constanu volume
were plotted. The results are shown in figures 10 and 11. A meximum of
three points was available for each. cur-e. The minima in the A »s. E, .
curves are due to the low vaiues of A obtained frem the z = 1.4 Hugoniot.
As this Hugoniot is not well defined, no significance carn be attached to
the minima. It 1s felt that carrying this analysis further is not war-
ranted with the present quantity of data. Obtaining 2 large amount of data
so that a statistical analysis could be applied appears to be the most
meaningful method of truly studviag the behavior of Grineisesn’s ratio ifrom

shock-wave data. :

Three high pressure points sere obtained by the multiple shock :ech-
nique using tungsten as a shock reflector. The data are presented in
Table IV. The values of A are calculated from the final shock state. The
internal energies of the two highest pressure points are in excess of the
sublimation energy. In considering the pressure and energy range covered
by these data compared xith the single shock data on porous aluminum, the
izost significant result is the fact that although it does not appear pos-
sible to definitely establisk the energy and volume dependence of A, the
values obtained do not vary widely and are quite close to the zero pressure

value obtained from thermodynamic data.

The Hugoniot data obtained frem the experiments in which preheated
soiid 1060 aluminum samples were used are presented in Table V. For the
purpose of studying Grineisen’s ratio as calculated from thermal pressure
and energy cffscts from the 0°K isotherm, these data are not useful. The
offsets in the preheated Hugoniot points from the room temperature Hugoniot

of solid 1660 aluminum were too small to be considered significant.

ne

‘ - ? - 3 ’: - D 703 - -
AL (P=0, V=V A == VICP/CE),, = VB 5/C,

zodulus and 8 is the volure cozfficieat of shersal expazsion.

2.1 for alunizunm, where ST 13 the isothersal balk
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Table IV
DOUBLE SHOCR POROUS ALUMINGM DATA
FIRST SHOCK i SECOND SHOCK
. TOTAL
INITIAL : n :
SHOT NO.| VOLIXE |[Pressaure ‘i:; tle g:;s: Presssre :;:;:__i ‘E::':G: ENERGY ? :
3;0,] (an) 3. read (kbaz) 3 g € (o? ‘e
(ca"/g {c="7g) {11D~ ergs/g) (e=”/g) (107 ergsrg);y” T e
10,876 | 0.630 319 3.338 46.57 °84 0.270 44.30 92,53 i.e0
11,305 | 0.631 426 0.33% 64.11 1,261 0.261 58.20 123.¢7 1.87
11,305 } 0.741 373 0.360 71.03 1,244 0.282 $3.95 135.77 2.03

. 9
¢E= SE 4+ 2E, + 1.65 % 10 ergs/g-




Table V

HUGONICT DATA FOR PREHEATED AND ROOM TEMPERATURE
SGLID 1060 ALUMINW

To SHOCK PARTICLE | FREE-SLAFACE Py v E, - E°
° VELOCITY VELOGCITY VELOCITY (kbar) 3 (eralx)
(°C) | (==/psec) | (=n/usec) (zz/ttsec) tea"/g) L
542 8.82 2.7% 5.47 618 0.264 23.6 x 10°
17 8.76 2.77 5.48 636 0.252 38.7 » 10°
555 8.56 2.76 5.27 611 9.262 43.3 x 10°
17 8.82 2.70 5.14 647 0.257 36.6 x 10°
543 8.24 2.23 1.66 475 0.282 30.1 x 10?
17 8.14 2.2 £.36 186 0.270 23.3 » 107

® Ezergy izcrease relative to state P= 0, T= 17°C.

As a consisteacy check some Hugoniot points for solid room temperature
1069 alucinun of measured initial density 2.70 g/cm3 were obtained by the
same technique used on the porous samples. The points, shown on figure 7,
are in good agreement with the Soviet Hugoniot® for solid aluminum at low

pressures—and oniy fair at the highest pressures.

2. TEFLON DATA

Ten data points on solid and porcus Teflon (see Table VI) were ob-
tzined using the same explosive driver systems and iompedance match tech-

nique (2024 aluziiuz standard) as =as used in obtaining the porous aluminum

Tabie VI
SOLID AND POROUS TEFLON BATA

g [ — ] P - v A
SHOT NO. (gready | T jimelmsec) L aban) | Gaaimsec) | (30 1108 (rgare)
il1,357¢0 | ©0.7828 $.374 i03 2.985 0.4037 44.87
110563 | 9.7782 | 2.77{ 5.636 |175.5 | 3.985 |0-3780 73.58
11,352 | 0.75628 6.086 207.0 $.335 0.3576 94.12
11,570 | 1.517 4.909 190.3 2.535 0.3160 32.64
11,363 1 1.524 i.42 .207 319.0 3.373 0.2993 56.87
11,5682 | 1.3517 6.683 371.¢0 3.50 $.2981 66.97
11,570 } 2.169 3,589 259.0 2.2135 0.2782 24.58
11,363 § 2.163 1.99 6.830 3$35.0 2.945 £.2629 43.37
13,450 § 2.i72 7.105 476.90 3.030 0.2608 47.39
11,362 | 2.183 7.262 504.0 3.22 0.2385 51.35

5 Tee shift ia the Sovie: Hogoniot described easlier i weli within experimestsel erzoz.
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data. In figure 12 the shock velocity is plotied against the partacle
velocity. The data obtained by the Avco Corporation are also included
on this graph for comparison. Figure 13 is a plot of th. Hugoniot pres-
<ure as a function of volume. As with the porous aluminum data. smooth

curves have been drawn through the points.

Since there 1s no theory at the present time as to the equation of
state of a plastic, and since the present data are preiiminary, 2t is
felt that further analysis should wait until more data are obtained. How-
ever, some estimates of the Gruneisen ratio can he made on the basis of
the data. In the absence of a 0°K isotherm for Teflon a few values of A
were ccmputed from the curves drawn threugh the Hugoniots of porous Teflon
using the curve drawn through the Hugoniot of soiid Teflon as a reference.
The results of these calculations are presented in Table VII. An estimate
of FQ, Grineisen’s ratio at zero pressure, was nade for Teiloa based upcn
available zero pressure data. From the thermodynamic definition of

Griineisen’s ratio
ts
lBTB
C,

(44)

where B, is the isethermal bulk modulus and 5 is the thermal expansion

coefficient. Values of 8 and €, were found to be (Rcf. 15)

S = 16.5 x 1073/°C

C, €.25 cal/g (ar 73°C}

B was estimated irom the data of Bridgman to be 43 kbar (Ref. 16). In-

serting these values into Eq. (44) vields a value ' = 0.313.
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Table VI1
CALCULATED VALUES OF A FCR TEFLON®

bt e ory

POROUS HUGONIOT
POROSITY A
a Volume Pressure Energy
(c-3/g) (kbar) (10? ergs/g}
1.42 0.310 215 37.18 1.063
1.42 0.340 133 <1.0 1.355
1.42 0.370 87 12.4 1.720
1.42 0.400 44 5.63 2.047
2.78 0.370 199 91.04 0.678
| 2.78 0.400 127 56.2 0.783

@ Hugoniot of Teflon & = 1.0 used as a reference curve.
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